In silico models to estimate a drug’s brain penetration likeliness

Susanne Winiwarter
UK QSAR meeting, Stevenage

2016-03-16
Outline

- Background
- Data
- Models
- Examples
- Outlook
Outline

- Background
- Data
- Models
- Examples
- Outlook

Susanne Winiwarter, DSM, AstraZeneca R&D

in silico models for brain penetration

UK QSAR meeting 160316
Importance in drug discovery

Two aspects

1. Drugs that target a receptor in the brain
 • Need to be able to cross the blood brain barrier, ie need sufficient permeability
 → often compounds were made more lipophilic to meet the requirement

2. Drugs that target a peripheral receptor
 • May be required to stay outside to avoid potential central sideeffects
 eg, antihistamines with quarternary amines were found to have less central, sedative effects
The Central Nervous System (CNS)

Blood Brain Barrier (BBB)

- protects and regulates the brain microenvironment
- consists of tightly joined endothelial cells (tight junction proteins, transporters, metabolism)
- pericytes and astrocytes required for BBB function – neurovascular unit
Blood-CSF and CSF-brain barriers

Abbreviations: CSF, cerebrospinal fluid; ISF, interstitial fluid

ISF bulk flow: 0.3 µL/g brain
CSF production: 2-5 µL/g brain

Source: Grapp et al. Nature Communications Volume: 4, Article number: 2123; DOI:doi:10.1038/ncomms3123
http://www.nature.com/ncomms/2013/130705/ncomms3123/fig_tab/ncomms3123_F7.html
Consider free drug hypothesis

\[\frac{C_{u,brISF}}{C_{u,p}} = K_{p,uu,br} \]

free brain-to-blood ratio:

\[(C_{t,brISF}) \text{ bound} \]

\[(C_{t,p}) \text{ bound} \]

\[(C_{u,p}) \text{ free} \]

\[(C_{u,brISF}) \text{ free} \]

Receptor bound

Background
Consider free drug hypothesis

\[K_{p,uu,br} = \frac{C_{u,brISF}}{C_{u,p}} = \frac{CL_{BBB}^{passive} + CL_{BBB}^{influx}}{CL_{BBB}^{passive} + CL_{BBB}^{efflux}} \]

- passive: \(K_{p,uu,br} \sim 1 \)
- active influx: \(K_{p,uu,br} > 1 \)
- active efflux: \(K_{p,uu,br} < 1 \)

\rightarrow \text{Transport mechanism determines free brain-to-blood ratio}
Outline

1. Background
2. Data
3. Models
4. Examples
5. Outlook
Data to understand brain penetration

in vivo data – clinical
- PET data (receptor occupancy)
- CSF data
- Classification depending on known central pharmacological effect
 \rightarrow free brain conc not really accessible

in vitro data – BBB models
- brain microvascular endothelial cells (BMEC)
 primary cells or immortalized cell lines
 various species, eg bovine
 co-cultures, eg with astrocytes

in vitro data – surrogates
- transporter interaction models, eg MDCK-MDR1 efflux measuring P-gp interaction
 passive permeability, eg Caco or PAMPA

in vitro data – supporting
- measurement of unspecific binding in plasma (f_u) and brain tissue ($f_{u,br}$ or $V_{u,br}$)

in vivo data – preclinical
- Free brain conc accessible via microdialysis
- PET, CSF
- $C_{br,ss} \rightarrow K_{p,br}$ (in combination with in vitro studies of binding)
- $K_{p,uu,br}$ (in situ brain perfusion, measures penetration rate)
Kp,uu,br – assessment in rat

1) *in vivo* assessment of Kp,br

- Cannulation of femoral vein
- 4-hour constant rate i.v. infusion (steady-state assumed)
- Terminal sampling of blood and brain tissue

Measured by HPLC/MSMS:

- Amount of drug in brain tissue (total brain concentration) Abrain (µmol/kgbrain)
- Total plasma concentration Cp (µmol/L)

\[
K_{p,uu} = \frac{A_{br}}{C_{p,u,p}} \]

\[
K_{p,uu} = \frac{C_{u,br,ISF}}{C_{u,p}} \]

2) *in vitro* assessment of drug binding

Brain slice method:

- preparation of fresh 300 µm slices from drug naïve rats
- incubation with drug in buffer to uptake equilibrium (5 hrs)

At equilibrium \(C_{buffer} = C_{u,\text{slice}ISF} \) then \(V_{u,br} = \frac{A_{\text{slice}}}{C_{u,buffer}} \)

Plasma protein binding determined via equilibrium dialysis (in vitro or ex vivo)

\[
C_{u,br,ISF} = \frac{A_{br}}{V_{u,br}} \]

\[
C_{u,p} = C_{p} \times f_{u,p} \]

Susanne Winiwarter, DSM, AstraZeneca R&D

in silico models for brain penetration

UK QSAR meeting160316
in vitro BBB models – recent progress:

A Simple Method for Assessing Free Brain/Free Plasma Ratios Using an In Vitro Model of the Blood Brain Barrier
Maxime Culot1,3, Anaëlle Fabulas - da Costa1,9, Emmanuel Sevin1, Erica Szorath2, Stefan Martinsson2, Milla Rentsi2, Yan Hongmei2, Romeo Cecchelli1, Stefan Lundquist2
PloS one (2013), 8(12) e80634, doi:10.1371/journal.pone.0080634

A Stable and Reproducible Human Blood-Brain Barrier Model Derived from Hematopoietic Stem Cells
Romeo Cecchelli1,9, Sezin Aday2,3, Emmanuel Sevin1, Catarina Almeida2,3,4, Maxime Culot1, Lucie Dehouck1, Caroline Coisne2, Britta Engelhardt2, Marie-Pierre Dehouck1, Lino Ferreira2,3.
PloS one (2014), 9(6), e99733, doi:10.1371/journal.pone.0099733
Outline

1. Background
2. Data
3. Models
4. Examples
5. Outlook

Susanne Winiwarter, DSM, AstraZeneca R&D

in silico models for brain penetration

UK QSAR meeting 160316
New experimental methodologies were applied to measure the unbound brain-to-plasma concentration ratio ($K_{p,uu,brain}$) and the unbound CSF-to-plasma concentration ratio ($K_{p,uu,CSF}$) in rats for 43 structurally diverse drugs. The relationship between chemical structure and $K_{p,uu,brain}$ was dominated by hydrogen bonding. Contrary to popular understanding based on the total brain-to-plasma concentration ratio (logBB), lipophilicity was not a determinant of unbound brain exposure. Although changing the number of hydrogen bond acceptors is a useful design strategy for optimizing $K_{p,uu,brain}$, future improvement of in silico prediction models is dependent on the accommodation of active drug transport. The structure—brain exposure relationships found in the rat also hold for humans, since the rank order of the drugs was similar for human and rat $K_{p,uu,CSF}$. This cross-species comparison was supported by $K_{p,uu,CSF}$ being within 3-fold of $K_{p,uu,brain}$ in the rat for 33 of 39 drugs. It was, however, also observed that $K_{p,uu,CSF}$ overpredicts $K_{p,uu,brain}$ for highly effluxed drugs, indicating lower efflux capacity of the blood—cerebrospinal fluid barrier compared to the blood—brain barrier.
Selection based on Shen dataset* and diversity; Additional model drugs and β-blockers included.

Selection based on Shen dataset* and diversity; Additional model drugs and β-blockers included

→ 43 compounds

= **Fridén dataset**

Comparison of experimental data

Relationship between Kp,uu,CSF and Kp,uu,brain in the rat, n=39, (A) and the agreement between rat and human Kp,uu,CSF, n=31* (B), average values shown.

* ... moxalactam was included twice (healthy volunteers, open circle, vs patient with bacterial meningitis, filled circle)
Correlations to simple physchem descriptors

→ hydrogen bond (acceptor) descriptors important, lipophilicity of less importance for $K_{p,uu,br}$
K_{p,uu} model 2 – use of all in house data

- in house $K_{p,uu}$ data for 246 compounds (73 as test set; log $K_{p,uu}$: -2.5 – 1; mean -1.1)
- different machine learning algorithms used (RF, PLS, SVM)
- direct and indirect models
- 196 2D and 3D physico-chemical descriptors (‘AZdescriptors’)
- accuracy of qualitative model 85% (89% on external test set)
- important descriptors related to hydrogen bonding

In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms

Hongming Chen, Susanne Winiwarter, Markus Fridén, Madeleine Antonsson, Ola Engkvist

ABSTRACT

Distribution over the blood-brain barrier (BBB) is an important parameter to consider for compounds that will be synthesized in a drug discovery project. Drugs that aim at targets in the central nervous system (CNS) must pass the BBB. In contrast, drugs that act peripherally are often optimized to minimize the risk of CNS side effects by restricting their potential to reach the brain. Historically, most prediction methods have focused on the total compound distribution between the plasma and the brain. However, recently it has been proposed that the unbound brain-to-plasma concentration ratio ($K_{p,uu}$) is more relevant. In the current study, quantitative $K_{p,uu}$ prediction models have been built on a set of 173 in-house compounds by using various machine learning algorithms. The best model was shown to be reasonably predictive for the test set of 73 compounds ($R^2 = 0.58$). When used for qualitative prediction the model shows an accuracy of 0.68 ($Kappa = 0.68$). An additional external test set containing 111 marketed CNS active drugs was also classified with the model and 89% of these drugs were correctly predicted as having high brain exposure.

© 2011 Elsevier Inc. All rights reserved.
K_p,uu model 2 – revisited

Exploring In Silico Prediction of the Unbound Brain-to-Plasma Drug Concentration Ratio: Model Validation, Renewal, and Interpretation

SRINIDHI VARADHARAJAN,1,2 SUSANNE WINIWARTER,2 LARS CARLSSON,3 OLA ENGKVIST,2 AJAY ANANTHA,2,4 THIERRY KOGEI,2 MARKUS FRIDÉN,2 JONNA STÅLRING,2 HONGMING CHEN2

1 Department of Biology, Lund University, Lund SE-22100, Sweden
2 Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Mölndal SE-43183, Sweden
3 Computational ADME and Safety, Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal SE-43183, Sweden
4 Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg SE-40530, Sweden
5 RIA Innovative Medicines, AstraZeneca R&D Mölndal, Mölndal SE-43183, Sweden

Received 7 October 2014; revised 14 November 2014; accepted 18 November 2014
Published online 24 December 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jps.24301

ABSTRACT: Recently, we built an in silico model to predict the unbound brain-to-plasma concentration ratio (K_p,uu), a measure of the distribution of a compound between the blood plasma and the brain. Here, we validate the previous model with new additional data points expanding the chemical space and use that data also to renew the model. The model building process was similar to our previous approach; however, a new set of descriptors, molecular signatures, was included to facilitate the model interpretation from a structure perspective. The best consensus model shows better predictive power than the previous model (R^2 = 0.6 vs. R^2 = 0.53, when the same 99 compounds were used as test set). The two-class classification accuracy increased from 76% using the previous model to 81%. Furthermore, the atom–summarized gradient based on molecular signature descriptor was proposed as an interesting new approach to interpret the K_p,uu, machine learning model and scrutinize structure K_p,uu relationships for investigated compounds. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1197–1206, 2015

Keywords: ADME, blood–brain barrier; computational ADME, drug transport; unbound brain-to-plasma concentration ratio; machine learning; in silico modeling

• Validation of previous model with additional, temporal data (accuracy 76%, somewhat lower than for original test set)
• New model built, similar methods, but including new set of descriptors (signatures)
• Accuracy of 2 class model ~80% for temporal test set
• Potential to interpret model for individual compounds through new descriptors
Validation of $K_{p,uu}$ model 2 (three years later)

$n=99$, temporal test set

$\log K_{p,uu,br}$ limit -1 ($K_{p,uu,br} 0.1$)

Susanne Winiwarter, DSM, AstraZeneca R&D

in silico models for brain penetration

UK QSAR meeting 160316
Identify substructures for modification

through atom summarised gradient values (SVM model using signature descriptors)

Atenolol,
Exp. log $K_{p,uu,br} = -1.59$, pred -1.06

Metoprolol,
Exp. log $K_{p,uu,br} = -0.2$, pred -0.67
Prediction using CNS+/- data

Identified 153 drugs with BDDCS and Pgp interaction information (~80% CNS+!)
CNS+ classification based on: marketed CNS drugs; $K_{p,uu}$ > 0.1 (hu if available)

Suggested decision tree:
1. low (predicted) permeability → likely CNS-
2. low P-gp ER (exp) → likely CNS+
3. BDDCS class I → likely CNS+

NOTE: about 98% of BDDCS class I cmpds CNS+ (>50% of cmpds in class I)
Pharmacokinetic model for $K_{p,uu,br}$ and $K_{p,uu,CSF}$

Kodaira et al, DMD 42:983-989, 2014

PS1 – passive permeability at BBB estimated from physchem descr
PS3 – passive permeability at BCSFB assumed to be proportional to PS1
PS2 – passive diffusion at ependyma inversely proportional to \sqrt{MW}
PS4 – active efflux $in vitro$ Pgp and BCRP activities considered

Resulting equations fitted (4 parameters) to $K_{p,uu,br}$ and $K_{p,uu,CSF}$ data for 19 compounds (three BCRP substrates, five P-gp substrates, one substrate for both)

Model could explain parameters within 3 fold for most compounds
in silico models for *in vitro* endpoints

Models of interest: P-gp interaction (eg MDCK-MDR1 efflux), BCRP interaction, combinations (eg Caco-2 efflux), passive permeability

Quite a few available in literature

In house models available for MDCK-MDR1 efflux, Caco-2 efflux and passive permeability (measured in Caco-2 cells)

<table>
<thead>
<tr>
<th>Model</th>
<th># train</th>
<th>method</th>
<th># test</th>
<th>RMSEP</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCK-MDR1 ER</td>
<td>>1700</td>
<td>RF</td>
<td>190</td>
<td>0.46</td>
<td>0.89</td>
</tr>
<tr>
<td>Caco-2 ER (class)</td>
<td>>13000</td>
<td>RF</td>
<td>1500</td>
<td>-</td>
<td>0.82</td>
</tr>
<tr>
<td>Caco-2 passive</td>
<td>>2500</td>
<td>RF</td>
<td>280</td>
<td>0.45</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Hydrogen bonding descriptors important for all models
Early discovery – select compounds/series

Usually not too concerned about BBB, unless targeting CNS

Combination of models used to select compounds to be made/series to be forwarded

Susanne Winiwarter, DSM, AstraZeneca R&D

in silico models for brain penetration

UK QSAR meeting 160316
Target in CNS, receptor occupancy can be measured, but not for all compounds. Efflux in Caco-2 shown to predict receptor occupancy. *in silico* model for Caco-2 efflux could be utilized as pre-filter in screening cascade.

Most compounds low efflux → likely to reach CNS. Only compounds with predicted high efflux needed measurement immediately. Other compounds measured for efflux when progressed.

Susanne Winiwarter, DSM, AstraZeneca R&D

in silico models for brain penetration

UK QSAR meeting160316
Judge brain penetration using all data I

Are there differences in risk of potential CNS side effects for compound and its metabolite?

<table>
<thead>
<tr>
<th></th>
<th>Caco-2 (P_{\text{app}})</th>
<th>logD</th>
<th>pred (P_{\text{app}})</th>
<th>pred logD</th>
<th>Caco-2 efflux prob (%)</th>
<th>MDCK-MDR1 ER (pred)</th>
<th>pred (K_{p,uu}) class</th>
<th>pred log (K_{p,uu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmpd X</td>
<td>high</td>
<td>4.2</td>
<td>16</td>
<td>3.8</td>
<td>43%</td>
<td>6.2</td>
<td>POS</td>
<td>-0.69</td>
</tr>
<tr>
<td>metabolite</td>
<td>high</td>
<td>3.1</td>
<td>9</td>
<td>3.1*</td>
<td>86%</td>
<td>5.8</td>
<td>NEG</td>
<td>-1.08</td>
</tr>
</tbody>
</table>

Interpretation:
- **Cmpd X** likely to reach CNS (high \(P_{\text{app}} \) and logD, efflux risk <50%, \(K_{p,uu} \) POS)
- Metabolite less likely to reach CNS (\(P_{\text{app}} \) still high, efflux risk >50%; \(K_{p,uu} \) NEG)

* Compound in model training set
Judge brain penetration using all data II

Judge a new compound in comparison to a closely related one:

<table>
<thead>
<tr>
<th>cmpd a</th>
<th>K_{p,uu}</th>
<th>Caco-2 P_{app}</th>
<th>Caco-2 ER</th>
<th>MDCK-MDR1-ER</th>
<th>pred P_{app}</th>
<th>Caco-2 efflux prob (%)</th>
<th>MDCK-MDR1 ER (pred)</th>
<th>pred K_{p,uu} class</th>
<th>pred log K_{p,uu}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmpd a</td>
<td>0.05</td>
<td>2.5</td>
<td></td>
<td></td>
<td>84</td>
<td>95%</td>
<td>2.5</td>
<td>POS</td>
<td>-0.46</td>
</tr>
<tr>
<td>cmpd b</td>
<td>47</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
<td>47*</td>
<td>77%</td>
<td>1.9</td>
<td>POS</td>
<td>-0.71</td>
</tr>
</tbody>
</table>

cmpd a: low risk to enter the brain according to experiment (exp K_{p,uu}=0.05, Caco efflux); pred K_{p,uu}=0.35 (wrong), high Caco-permeability, high efflux risk → efflux to be considered in series

cmpd b: exp: good permeability, but efflux in Caco (higher than cmpd a), no efflux in MDCK-MDR1; predicted: permeability (in train set) and efflux data in line with experiment; K_{p,uu} as pos, but value lower than cmpd c; → risk for brain availability lower than for cmpd a

→ K_{p,uu} model not to be used by itself, but in conjunction with known data and other relevant predictions
Summary – examples and usage

• Models for unbound brain to plasma ratio exist and can be used to estimate the likelihood of new chemical entities to enter the brain

• BUT: Even low ratios can lead to CNS effects when compound is potent enough (or needs really high plasma concentrations)

• Judgement to be based on all available data – including potency (or secondary pharmacology)
 • consider permeability and efflux data (and predictions)
 • consider how well close compounds are predicted
 • consider model applicability (eg distance to training set)

• Key question: Which model(s) help a project forward?
Outline

- Background
- Data
- Models
- Examples
- Outlook

Susanne Winiwarter, DSM, AstraZeneca R&D

in silico models for brain penetration

UK QSAR meeting160316
Outlook

1. Consensus that free drug concentration is important
 → $K_{p,uu,br}$ is a useful parameter to understand brain penetration
 → more data will become available for model building

2. Efforts to improve *in vitro* models for brain penetration – eg BBB models based on human stem cells
 → will enable human relevant values
 → will enable even more data to become available

3. Improvement of usability of *in silico* or pharmacokinetic models
 • utilisation of descriptors that can explain structural requirements
 • more ways to include transporter interaction parameters
 • enable modeling for different species/populations
Acknowledgements

DMPK
Markus Fridén
Madeleine Antonsson
Gunilla Jerndal
Hong Wan
Ulf Bredberg

Computational Chemistry/Toxicology
Hongming Chen
Ola Engkvist
Srinidhi Varadharajan
Lars Carlsson
Jonna Stålring
Ernst Ahlberg

Uppsala University
Ola Bengtsson
Margareta Hammarlund-Udenaes

Susanne Winiwarter, DSM, AstraZeneca R&D
in silico models for brain penetration
UK QSAR meeting 160316
Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 2 Kingdom Street, London, W2 6BD, UK, T: +44(0)20 7604 8000, F: +44 (0)20 7604 8151, www.astrazeneca.com
BACK-UP
Descriptors

AZdescriptors

Set of 196 physico-chemical 2D and 3D descriptors, eg MW, clogP, V, PSA, NPSA, HBA, HBD, charge related, topology indices, atom counts, ...

Wood et al Mol. Inf. 2011, 30, 960-972

The Signature Descriptor

Signatures are

- chemical substructures, originating from each atom in a compound
- built layer by layer, see Figure, generating a canonical representation of the substructure.
- The number of added layers is said to be the height of the signature, where height zero represents the origin atom only.
- Each node can be arbitrarily labeled but here only atom-types are used

Courtesy E. Ahlberg