HPPD: ligand- and target-based virtual screening on a herbicide target

Miriam López Ramos
UK QSAR meeting, Jealott’s Hill, 22-10-2009
HPPD: a herbicide target

- HPPD: 4-hydroxyphenylpyruvate dioxygenase

![Chemical reaction diagram]

- A pharmaceutical target: treatment of hypertyrosinemia (unregulated degradation of tyrosine into toxic metabolites)

- A herbicide target: HPPD inhibition
 - prevents production of plastoquinones → no energy from photosynthesis
 - restricts vitamin E production → sensitivity to oxidative stress
 - prevents carotenoid biosynthesis → chlorophyll no longer protected against UV → bleaching

Biochemistry, 43, 10414 (2004)
Outlooks on Pest Management, 20, 1, 27-30 (2009)
HPPD: a herbicide target

- HPPD is a Fe(II) containing, non-heme protein

- Typical inhibitors:

 - **Pyrazolones**: Topramezone (Clio® and Impact®, BASF 2006)

 - **Triketones**: Mesotrione (Callisto® and Lumax®, Syngenta 2002)

 - **Diketonitriles**: Isoxaflutole (IFT) (Balance® and Merlin®, Bayer 1996)
HPPD at Syngenta

- First inhibitor discovered in 1977 by serendipity (natural product)
- More than 25 years of research
- Well-known mode of action and clear SAR
- 6000 compounds synthesised
- Several co-crystal structures solved in house
- Blockbusters on the market: mesotrione reached $270 million sales by 2004

Good case study to:

- implement a typical pharma computational approach in agro
- evaluate the performance of virtual screening methods available in house
HPPD: ligand- and target-based virtual screening

- Aim of the study: a retrospective work: let’s imagine that...
 - the HPPD project is just starting
 - we only have a few active compounds and a crystal structure
 - we want to look for other compounds/scaffolds in our corporate collection and/or commercial libraries

→ Which virtual screening tool would give the best chances to retrieve the highest number of active compounds?

Assess the relative performance of the virtual screening methods
 - using a set of true actives and a decoy
 - evaluating active compounds retrieval and scaffold hopping possibilities
HPPD: ligand- and target-based virtual screening

- Choice of reference ligand and target crystal structure
- Building of the database used
- Virtual screening methods used & results
- Conclusions
Reference ligand & target protein

- Reference ligand: mesotrione

\[
\begin{align*}
\text{Fe}^{2+} & \quad \text{pharmacophore} \\
\end{align*}
\]

- Target protein: one of the most representative crystals

The immediate binding site around the Fe(II) from a crystal structure of mesotrione bound to Arabidopsis HPPD
In vitro IC$_{50}$ values had been determined for the most active and representative compounds → 216 compounds with IC$_{50}$<1 μM as active set

Chemical diversity: 15 scaffolds present → analyse minimal fraction of the database to select to find first compound from each group
Database building: decoy compounds

- No agro equivalent of the MDDR database

- 1st idea: use the corporate database
 - too diverse, difficult to filter and cluster to retain only agro-like compounds
 - the results were too good!!

- 2nd trial: use the Pesticide Manual compounds as starting point
 - 1,373 products commercialised for agricultural use
 - Select in the „cleaned“ corporate database the most similar compounds to each of them
 - Remove all compounds associated with the HPPD project
 → 49,549 compounds as decoy set
HPPD: ligand- and target-based virtual screening

- Choice of reference ligand and target crystal structure
- Building of the database used
- Virtual screening methods used & results
 - 2D ligand-based
 - 3D ligand-based
 - Target-based
- Conclusions
Virtual screening methods

- Ligand-based 2D:
 - 12 Pipeline Pilot's circular fingerprints, using

<table>
<thead>
<tr>
<th>Feature evaluation</th>
<th>Atom typing</th>
<th>Functional (F)</th>
<th>Atom types (E)</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence/absence (P)</td>
<td>FCFP_2</td>
<td>ECFP_2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCFP_4</td>
<td>ECFP_4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCFP_6</td>
<td>ECFP_6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Counts (C)</td>
<td>FCFC_2</td>
<td>ECFC_2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCFC_4</td>
<td>ECFC_4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCFC_6</td>
<td>ECFC_6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- Pipeline Pilot's MDL keys (not shown)
2D: Pipeline Pilot’s fingerprints: diameter

Influence of diameter:

D = 2 < 4~6

Has all the important features
2D: Pipeline Pilot’s fingerprints: atom type and feature evaluation

Counts > fingerprints
Atom types no influence
2D: Pipeline Pilot’s fingerprints: atom type and feature evaluation

Functional > Element atom types
Feature evaluation no influence
2D: Pipeline Pilot’s fingerprints: atom type and feature evaluation

Fingerprints vs Counts

xCFC > xCFP	xCFP > xCFC

Functional vs Element atom typing

ECFz	FCFz > ECFz

0.8-1% 10-20% % of database

Distribution of the number of ketones in actives and inactives

Retrieving compounds with 2 or 3 ketones and not just 1 will give more actives!

Counts > fingerprints as long as all diketones and triketones have not been retrieved

Syngenta
2D: Pipeline Pilot’s fingerprints: atom type and feature evaluation

<table>
<thead>
<tr>
<th>Fingerprints vs Counts</th>
<th>xCFC > xCFP</th>
<th>xCFP > xCFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional vs Element atom typing</td>
<td>ECFz > FCFz</td>
<td>FCFz > ECFz</td>
</tr>
</tbody>
</table>

- Compounds with more diverse structures are the last to be retrieved
- Functional atom-typing allows better scaffold hopping and gives best results
HPPD: ligand- and target-based virtual screening

- Choice of reference ligand and target crystal structure
- Building of the database used
- Virtual screening methods used & results
 - 2D ligand-based
 - 3D ligand-based
 - Target-based
- Conclusions
3D ligand-based virtual screening: methods

• Ligand-based 3D:
 • ROCS (Openeye):
 - Shape only
 - Using a color force field (ImplicitMillsDean)
 - Using a color force field and gradients (optchem)
 • ROCS + EON reranking of all ROCS runs
 • Phase (Schrödinger):
 - Shape only
 - Including atom-typing:
 • Elements
 • MacroModel types
 • Phase pharmacophore types
 • Phase pharmacophore search
3D ligand-based: ROCS

- shape + color
 - \Rightarrow retrieval rate $\uparrow \uparrow$
 - \Rightarrow scaffold hopping $\downarrow \downarrow$

- shape only

- with atom types (color):
 - \Rightarrow retrieval rate \sim
 - \Rightarrow scaffold hopping \downarrow

- with gradients in color:
 - \Rightarrow retrieval rate \sim
 - \Rightarrow scaffold hopping \downarrow
3D ligand-based: Phase

With atom types:

→ retrieval rate ↓
 (pharmacophore ↓ ↓)

→ scaffold hopping ↓
 (macromodel < elements)
3D ligand-based: shape and atom-types

Phase-shape and ROCS + color perform best
3D ligand-based: include electrostatics

Retrieval rates obtained with 3D methods based on shape and atom-typing

- **Phase-shape only**
- **ROCS + color**

Fraction of Actives vs. Fraction of Samples
3D ligand-based: include electrostatics

- All EON equivalent
- Plateau: difficulty to retrieve more diverse compounds

EON good to enhance retrieval rate but not for scaffold hopping

Best choices:
- ROCS + color + optchem + EON
- ROCS + color
3D ligand-based: search matches for pharmacophore (Phase)

- No imines nor pyrazolones
- No chloro compounds (bad conformation)
3D ligand-based: conclusions

- Best 3D method is search for matches for pharmacophore hypothesis
 But too easy test case, result might not be general

- ROCS & Phase methods:
 - Retrieval rates: best choice is ROCS+color (eventually with optchem and EON)
 - Scaffold hopping: *the more strongly defined the atom types are, the less prone for scaffold hopping the method is*

For scaffold hopping:
- Phase-shape Macromodel < Phase-shape elements < Phase-shape only
- ROCS + EON < ROCS + color + optchem < ROCS + color < ROCS
HPPD: ligand- and target-based virtual screening

- Choice of reference ligand and target crystal structure
- Building of the database used
- Virtual screening methods used & results
 - 2D ligand-based
 - 3D ligand-based
 - Target-based
- Conclusions
Target-based virtual screening: methods

- Target-based:
 - Glide (Schrödinger)
 - Gold (CCDC)
Target-based: results

Retrieval rates obtained with target-based methods

Gold

Glide

Fraction of Actives vs Fraction of Samples
All the first picked compounds are acids!! (wrong chelation geometry)

1) Glide scoring with metals: when metal positively charged, only interactions with anionic ligands are included

2) No deprotonated tautomers generated

No actives picked until 0.5%, then good performance
Conclusions
Conclusions

● Best methods for retrieval rates of active compounds:
 • Overall: pharmacophore search (not general result)
 • Otherwise: ROCS + color

● Scaffold hopping:
 • 2D, 3D and target-based methods are globally equivalent
 • In ligand-based methods, the more defined the atom type the less diversity retrieved

● Correlation between increased complexity and increased results:
 • Good within ligand-based methods
 • Weak 2D \rightarrow 3D \rightarrow target-based since target-based$<$3D

● Pitfalls...
 • Database generation & preparation
 • Non optimal default parameters \rightarrow adjust to target?
Acknowledgements

Thanks to...

- Francesca Perruccio (Computational Chemist)

- Jane Wibley (Crystallographer)

- Glynn Mitchell (HPPD Project Leader)